8 research outputs found

    Complete quantum-inspired framework for computational fluid dynamics

    Full text link
    Computational fluid dynamics is both an active research field and a key tool for industrial applications. The central challenge is to simulate turbulent flows in complex geometries, a compute-power intensive task due to the large vector dimensions required by discretized meshes. Here, we propose a full-stack solver for incompressible fluids with memory and runtime scaling polylogarithmically in the mesh size. Our framework is based on matrix-product states, a powerful compressed representation of quantum states. It is complete in that it solves for flows around immersed objects of diverse geometries, with non-trivial boundary conditions, and can retrieve the solution directly from the compressed encoding, i.e. without ever passing through the expensive dense-vector representation. These developments provide a toolbox with potential for radically more efficient simulations of real-life fluid problems

    Polynomial unconstrained binary optimisation inspired by optical simulation

    Full text link
    We propose an algorithm inspired by optical coherent Ising machines to solve the problem of polynomial unconstrained binary optimisation (PUBO). We benchmark the proposed algorithm against existing PUBO algorithms on the extended Sherrington-Kirkpatrick model and random third-degree polynomial pseudo-Boolean functions, and observe its superior performance. We also address instances of practically relevant computational problems such as protein folding and electronic structure calculations with problem sizes not accessible to existing quantum annealing devices. In particular, we successfully find the lowest-energy conformation of lattice protein molecules containing up to eleven amino-acids. The application of our algorithm to quantum chemistry sheds light on the shortcomings of approximating the electronic structure problem by a PUBO problem, which, in turn, puts into question the applicability of quantum annealers in this context.Comment: 10 pages, 6 figure

    Continuous-variable quantum tomography of high-amplitude states

    Get PDF
    Quantum state tomography is an essential component of modern quantum technology. In application to continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography methods typically reconstruct the state in discrete bases, and are hence limited to states with relatively low amplitudes and energies. Here, we overcome this limitation by utilizing a feed-forward neural network to obtain the density matrix directly in the continuous position basis. An important benefit of our approach is the ability to choose specific regions in the phase space for detailed reconstruction. This results in a relatively slow scaling of the amount of resources required for the reconstruction with the state amplitude, and hence allows us to dramatically increase the range of amplitudes accessible with our method
    corecore